ArcPy Reclassify Raster – Complete Guide with Examples
The arcpy.sa.Reclassify function is a powerful spatial analysis tool in ArcGIS that allows you to reassign values in a raster dataset based on specified criteria. This is particularly useful for data standardization, categorical analysis, and creating binary masks from continuous data.
Syntax
arcpy.sa.Reclassify(in_raster, reclass_field, remap, {missing_values})
Parameters
- in_raster: Input raster dataset to be reclassified
- reclass_field: Field containing the values to be reclassified (typically “Value”)
- remap: RemapValue, RemapRange, or RemapTable object defining the reclassification
- missing_values: How to handle missing values (optional)
Basic Example: Simple Value Reclassification
import arcpy
from arcpy.sa import *
# Set environment
arcpy.env.workspace = r"C:\GIS_Data\Analysis"
arcpy.CheckOutExtension("Spatial")
# Simple reclassification using RemapValue
input_raster = "landcover.tif"
remap_values = RemapValue([[1, 10], [2, 20], [3, 30], [4, 40]])
# Perform reclassification
reclassified = Reclassify(input_raster, "Value", remap_values)
reclassified.save("landcover_reclassified.tif")
print("Reclassification completed successfully!")
Range-Based Reclassification
Perfect for continuous data like elevation or temperature:
import arcpy
from arcpy.sa import *
arcpy.env.workspace = r"C:\GIS_Data\Elevation"
arcpy.CheckOutExtension("Spatial")
# Reclassify elevation into zones
elevation_raster = "dem.tif"
# Define elevation ranges
elevation_ranges = RemapRange([
[0, 500, 1], # Sea level to 500m = Zone 1
[500, 1000, 2], # 500-1000m = Zone 2
[1000, 1500, 3], # 1000-1500m = Zone 3
[1500, 2000, 4], # 1500-2000m = Zone 4
[2000, 9999, 5] # Above 2000m = Zone 5
])
# Execute reclassification
elevation_zones = Reclassify(elevation_raster, "Value", elevation_ranges)
elevation_zones.save("elevation_zones.tif")
Advanced Example: Multiple Criteria Reclassification
import arcpy
from arcpy.sa import *
def reclassify_suitability_analysis():
"""
Perform land suitability analysis using multiple reclassified rasters
"""
arcpy.env.workspace = r"C:\GIS_Data\Suitability"
arcpy.env.overwriteOutput = True
arcpy.CheckOutExtension("Spatial")
try:
# Reclassify slope (degrees to suitability scale 1-5)
slope_raster = "slope_degrees.tif"
slope_remap = RemapRange([
[0, 5, 5], # Flat areas - excellent (5)
[5, 15, 4], # Gentle slopes - good (4)
[15, 25, 3], # Moderate slopes - fair (3)
[25, 35, 2], # Steep slopes - poor (2)
[35, 90, 1] # Very steep - unsuitable (1)
])
slope_reclass = Reclassify(slope_raster, "Value", slope_remap)
# Reclassify distance to roads (meters to suitability)
road_distance = "distance_to_roads.tif"
road_remap = RemapRange([
[0, 100, 5], # Very close - excellent
[100, 500, 4], # Close - good
[500, 1000, 3], # Moderate distance - fair
[1000, 2000, 2], # Far - poor
[2000, 999999, 1] # Very far - unsuitable
])
road_reclass = Reclassify(road_distance, "Value", road_remap)
# Reclassify land use codes
landuse_raster = "landuse.tif"
landuse_remap = RemapValue([
[1, 1], # Urban - unsuitable
[2, 5], # Agricultural - excellent
[3, 4], # Grassland - good
[4, 2], # Forest - poor
[5, 1], # Water - unsuitable
[6, 3] # Barren - fair
])
landuse_reclass = Reclassify(landuse_raster, "Value", landuse_remap)
# Combine all factors with weighted overlay
# (This would typically use Weighted Overlay tool)
combined_suitability = (slope_reclass * 0.4 +
road_reclass * 0.3 +
landuse_reclass * 0.3)
combined_suitability.save("land_suitability.tif")
print("Suitability analysis completed successfully!")
return "land_suitability.tif"
except Exception as e:
print(f"Error in suitability analysis: {str(e)}")
return None
finally:
arcpy.CheckInExtension("Spatial")
# Run the analysis
result = reclassify_suitability_analysis()
Working with NoData Values
import arcpy
from arcpy.sa import *
# Handle NoData values explicitly
arcpy.env.workspace = r"C:\GIS_Data"
arcpy.CheckOutExtension("Spatial")
input_raster = "temperature.tif"
# Reclassify temperature data, handling NoData
temp_remap = RemapRange([
[-50, 0, 1], # Freezing
[0, 10, 2], # Cold
[10, 20, 3], # Cool
[20, 30, 4], # Warm
[30, 50, 5] # Hot
])
# Specify how to handle missing values
temp_reclass = Reclassify(input_raster, "Value", temp_remap, "NODATA")
temp_reclass.save("temperature_zones.tif")
Binary Classification Example
import arcpy
from arcpy.sa import *
def create_binary_mask(input_raster, threshold_value, output_name):
"""
Create a binary mask from continuous data
Values above threshold = 1, below = 0
"""
arcpy.CheckOutExtension("Spatial")
try:
# Get raster statistics to understand data range
desc = arcpy.Describe(input_raster)
print(f"Processing: {desc.baseName}")
# Create binary remap
# This assumes values range from 0 to some maximum
binary_remap = RemapRange([
[0, threshold_value, 0], # Below threshold = 0
[threshold_value, 999999, 1] # Above threshold = 1
])
# Execute reclassification
binary_result = Reclassify(input_raster, "Value", binary_remap)
binary_result.save(output_name)
print(f"Binary mask created: {output_name}")
print(f"Threshold used: {threshold_value}")
except Exception as e:
print(f"Error creating binary mask: {str(e)}")
finally:
arcpy.CheckInExtension("Spatial")
# Example usage
create_binary_mask("precipitation.tif", 100, "high_precipitation_mask.tif")
Best Practices and Tips
1. Environment Settings
Always set appropriate environment settings for optimal performance:
# Set processing extent and cell size
arcpy.env.extent = "MAXOF" # or specify custom extent
arcpy.env.cellSize = "MINOF" # or specify cell size
arcpy.env.snapRaster = "reference_raster.tif"
arcpy.env.outputCoordinateSystem = arcpy.SpatialReference(4326) # WGS84
2. Data Validation
Validate your input data before reclassification:
def validate_raster_data(raster_path):
"""Validate raster before reclassification"""
try:
desc = arcpy.Describe(raster_path)
# Check if raster exists and is valid
if not desc.datasetType == "RasterDataset":
raise ValueError("Input is not a valid raster dataset")
# Get basic statistics
result = arcpy.GetRasterProperties_management(raster_path, "MINIMUM")
min_val = float(result.getOutput(0))
result = arcpy.GetRasterProperties_management(raster_path, "MAXIMUM")
max_val = float(result.getOutput(0))
print(f"Raster range: {min_val} to {max_val}")
return True, min_val, max_val
except Exception as e:
print(f"Validation error: {str(e)}")
return False, None, None
3. Memory Management for Large Datasets
For large rasters, consider processing in chunks or using temporary outputs:
# Process large rasters efficiently
arcpy.env.parallelProcessingFactor = "75%" # Use 75% of available cores
arcpy.env.compression = "LZ77" # Compress output
arcpy.env.pyramid = "PYRAMIDS -1 BILINEAR DEFAULT 75 NO_SKIP" # Build pyramids
4. Error Handling Template
def safe_reclassify(input_raster, remap_object, output_name):
"""
Robust reclassification with comprehensive error handling
"""
try:
# Check spatial analyst extension
if not arcpy.CheckExtension("Spatial") == "Available":
raise RuntimeError("Spatial Analyst extension not available")
arcpy.CheckOutExtension("Spatial")
# Validate inputs
if not arcpy.Exists(input_raster):
raise FileNotFoundError(f"Input raster not found: {input_raster}")
# Perform reclassification
result = Reclassify(input_raster, "Value", remap_object)
result.save(output_name)
print(f"Successfully created: {output_name}")
return True
except Exception as e:
print(f"Reclassification failed: {str(e)}")
return False
finally:
arcpy.CheckInExtension("Spatial")
Common Use Cases
- Land Cover Classification: Convert detailed land use codes to simplified categories
- Risk Assessment: Transform continuous risk scores into discrete risk levels
- Suitability Analysis: Standardize multiple criteria to common scales
- Threshold Analysis: Create binary masks from continuous data
- Data Standardization: Normalize different datasets to comparable ranges
Troubleshooting Common Issues
Issue: “ERROR 000539: Invalid raster dataset”
Solution: Verify the raster path and ensure the file exists and is not corrupted.
Issue: “Remap values outside input range”
Solution: Check your input raster’s value range using GetRasterProperties_management.
Issue: “Out of memory errors”
Solution: Process smaller extents, reduce cell size, or increase virtual memory.
Issue: “Spatial Analyst license not available”
Solution: Ensure you have a Spatial Analyst license and check it out properly.
The ArcPy Reclassify function is an essential tool for spatial analysis workflows. By understanding the different remap types and following best practices, you can efficiently transform raster data to meet your analysis requirements. Always remember to handle errors gracefully and validate your inputs for robust, production-ready code.